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SUMMARY

Alternative splicing (AS) is a widespread process
underlying the generation of transcriptomic and
proteomic diversity and is frequently misregulated
in human disease. Accordingly, an important goal
of biomedical research is the development of
tools capable of comprehensively, accurately, and
efficiently profiling AS. Here, we describe Whippet,
an easy-to-use RNA-seq analysis method that
rapidly—with hardware requirements compatible
with a laptop—models and quantifies AS events of
any complexity without loss of accuracy. Using an
entropic measure of splicing complexity, Whippet
reveals that one-third of human protein coding genes
produce transcripts with complex AS events
involving co-expression of two or more principal
splice isoforms. We observe that high-entropy AS
events are more prevalent in tumor relative to
matched normal tissues and correlate with increased
expression of proto-oncogenic splicing factors.
Whippet thus affords the rapid and accurate analysis
of AS events of any complexity, and as such will facil-
itate future biomedical research.

INTRODUCTION

High-throughput RNA sequencing (RNA-seq) technologies are

producing vast repositories of transcriptome profiling data at

an ever-expanding pace (Silvester et al., 2018). This explosion

in data has enabled genome-wide investigations of the role of

alternative splicing (AS) in gene regulation and its dysregulation

in human diseases and disorders. Initial investigations using

RNA-seq data revealed that �95% of human multi-exon gene

transcripts undergo AS (Pan et al., 2008; Wang et al., 2008).

These and more recent studies analyzing ribosome-engaged

transcripts and quantitative mass spectrometry data suggest
Mo
that AS is amajor process underlying the generation of transcrip-

tomic and proteomic complexity (Floor and Doudna, 2016;

Liu et al., 2017; Sterne-Weiler et al., 2013; Weatheritt et al.,

2016; reviewed in Blencowe, 2017). Furthermore, numerous AS

events belonging to co-regulated and evolutionarily conserved

exon networks have been shown to provide critical functions

in diverse processes (Baralle and Giudice, 2017; Tapial

et al., 2017).

A major challenge confronting genome-wide investigations of

AS is that existing methods for analyzing RNA-seq data require

extensive computational resources and expertise. For example,

widely employed tools involve alignment of reads to a transcrip-

tome or reference genome, followed by quantification by down-

stream methods that estimate percent spliced in (PSI,J) values

for each AS event, such as cassette exons, alternative 50 and 30

splice sites, and retained introns. These steps can be time

consuming and typically present a bottleneck when analyzing

large datasets.

Recent developments in transcript expression quantification

have circumvented traditional alignment steps by extracting

k-mers (i.e., all possible sequences of length k) from reads to

identify possible transcripts of origin. Such methods can

decrease processing times by 10- to 100-fold (Bray et al.,

2016; Patro et al., 2017). However, their accuracy relies on

whole ‘‘transcript-level’’ annotation models (i.e., models that re-

cord the precise location of intron and exon boundaries, and

spliced junctions, for all transcripts), which are incomplete for

the majority of species, and inconsistent among even the

best-annotated species. The lack of complete annotation

models can thus confound the accurate detection and quantifi-

cation of AS events when using transcript-level methods. More

widely used methods for RNA-seq analysis, focusing on the

local detection and quantification of AS events, are referred to

below as ‘‘event-level’’ approaches (Figure S1A; Katz et al.,

2010; Tapial et al., 2017; Wang et al., 2017). These methods

can achieve considerable accuracy for simple AS events

(Vaquero-Garcia et al., 2016), yet existing tools are computa-

tionally inefficient in comparison with transcript-level methods,

and most utilize predetermined simple binary models (i.e., a sin-

gle alternative exon surrounded by two constitutive exons),
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Figure 1. Overview of Whippet

(A) Example genemodel with two alternative isoforms andWhippet’s node assignments as indicated by number and separated by dashed lines. Genemodels can

be supplemented beyond standard annotation sets with new splice sites and novel exons mined using de novo spliced read aligners (see also Figure S1E).

(B) The contiguous splice graph (CSG) for the gene model in (A). Each CSG node has two boundaries: an incoming (left side of node, label pointing upward) and

outgoing (right side of node, pointing downward), and these have ‘‘soft’’ or ‘‘hard’’ alignment extension properties (see D). Boundary types are designated as hard

or soft depending on whether or not a genomic sequence separates two neighboring nodes, respectively. All 50 SpliceSite and 30 SpliceSite boundaries have

k-mer indices (colored lines) that are used for spliced read alignment (middle top). Lines with arrows indicate potential connectivity (edges) between nodes

(middle bottom).

(C) A single transcriptome full-text index in minute space (FM-Index) is built from concatenated CSG sequences, with solid lines indicating separation between

each CSG (bottom).

(D) Diagram of CSG alignment, which is seeded from a raw RNA-seq read and then extended in both directions. Alignments can extend through soft but not hard

boundaries. The two read k-mers flanking a spliced node boundary are used to return the set of compatible nodes for spliced junction extension (see STAR

Methods for CSG alignment rules).

(E) Example Whippet AS event (top) for a nodeN, defined as the full set of spliced edges aligned (in an RNA-seq dataset) between the nodes farthest upstream or

downstream for connecting (bolded labels) or skipping edges (regular labels). To determine percent spliced in (J) of some nodeN, all paths through the AS event

are enumerated (bottom left) and quantified through convergence of the expectation-maximization (EM) algorithm (bottom right) (see STAR Methods). Paths

including the node N are bolded. mle, maximum likelihood estimate.
making them poorly suited for the analysis of complex AS

patterns.

In light of these challenges, an important goal for understand-

ing how transcriptomes shape biological processes is to develop

methods capable of accurately analyzing simple and complex

AS patterns with high efficiency. To address these challenges,

we have developed Whippet, an easy-to-use, event-level soft-

ware tool for the accurate and efficient detection and quantifica-

tion of AS events of any complexity. Whippet has computational

requirements compatible with a laptop computer and is capable

of analyzing reads streamed from web-accessible data files by

entering a file accession number. Another feature of Whippet is

that it uses an entropic measure of AS to facilitate the accurate

profiling of AS. We demonstrate the utility of Whippet in the dis-

covery of previously uncharacterized AS complexity in verte-

brate transcriptomes associated with the regulation of tandem
188 Molecular Cell 72, 187–200, October 4, 2018
domains and other protein sequence features, as well as a

remarkable increase in AS complexity in cancer transcriptomes.

DESIGN

Efficient Quantification of Alternative Splicing Using
Whippet
Whippet models transcriptome structure by building ‘‘contig-

uous splice graphs’’ (CSGs). These are directed graphs whose

nodes are non-overlapping exonic sequences, and edges (i.e.,

connections between nodes) represent splice junctions or

adjacent exonic regions (Figures 1A and 1B). Splice graphs

allow single isoforms to be represented as paths through nodes

in the graph (Heber et al., 2002; Trapnell et al., 2010; Vaquero-

Garcia et al., 2016). Whippet’s CSGs extend the concept of

splice graphs to a lightweight data structure that indexes the



transcriptome for fast and modular alignment of raw RNA-seq

reads across splice junctions (Figures 1B and 1C). To facilitate

indexing, Whippet defines incoming and outgoing boundary

types (e.g., 50 or 30 splice sites or transcription start or end sites;

refer to Figure 1B legend for details) that specify the theoretical

connectivity through the CSG for each node (Figures 1B and

S1B). For each 50 or 30 splice site boundary, Whippet’s CSG in-

dex records an upstream or downstream k-mer, respectively,

so as to enable efficient spliced read alignment across all

possible splice junctions; this includes junctions that do not

occur within annotated transcripts but which combine annotated

donor or acceptor splice sites (Figures 1B–1D, S1C, and S1D;

see STAR Methods for details). For example, Whippet’s CSG in-

dex for the human genome hg19 build can represent AS events

from >1.3 million exon-exon junctions in >2.3 billion theoretically

possible isoform paths, whereas only �100,000 of these paths

are found in GENCODE v25 TSL1 annotated transcripts.

After alignment, a Whippet AS event is defined as the collec-

tive set of a node’s skipping or connecting edges (e.g., edge

1-3 skips node 2, and edges 1-2 and 2-3 connect to node 2 in

Figure 1E; see STAR Methods). When enumerating paths

through a node’s AS event, it is possible thatmultiple paths share

common (i.e., ambiguous) edges (e.g., edges 1-2 and 3-4 are

shared among multiple paths in Figure 1E). Therefore, to accu-

rately quantify all AS events, the proportional abundance of

each path is determined using maximum likelihood estimation

by the expectation-maximization (EM) algorithm (see STAR

Methods). The percent spliced in (PSI,J; range 0.0 to 1.0) value

of a node is then calculated as the sum of the proportional abun-

dance of the paths containing the node (Figure 1E).

RESULTS

Whippet Facilitates Accurate Analysis of Alternative
Splicing
To assess Whippet’s accuracy, we compared its J values with

those measured from RT-PCR data and commonly used RNA-

seq event-level analysis tools (Irimia et al., 2014; Katz et al.,

2010; Wang et al., 2017; Vaquero-Garcia et al., 2016)—which

quantify J using reads that directly map to an AS event—as

well as transcript-level tools (Trincado et al., 2018), which esti-

mate J based on reads mapping across entire transcripts (see

Methods S1 and Figures S2A–S2G for details of mapping bench-

marking). RT-PCR-derived and RNA-seq-derivedJ values were

both from adult mouse liver and cerebellum, as well as from stim-

ulated and unstimulated human Jurkat T cell line samples

(Vaquero-Garcia et al., 2016). Notably, Whippet and the other

event-level tools display �2.5-fold lower median error profiles

compared to transcript-level methods, including SUPPA2 (Trin-

cado et al., 2018) and Whippet_TPM, an approach developed

in the present study to afford direct comparisons of transcript-

level J estimates that maintain Whippet’s node definitions (Fig-

ures 2A, S2H, S3A, and S3B; Table S1; STAR Methods).

Benchmarking against RT-PCRJ values, while informative, is

limited by the relatively small sample set (n = 162), the types of

the events assessed, and possible intrinsic technical biases

introduced by PCR. To address this, we assessed the accuracy

of Whippet relative to other tools when comparing theirJ values
against synthetic (i.e., ‘‘ground truth’’) J values simulated from

RNA-seq data obtained from a reference transcriptome annota-

tion (GENCODE v25 TSL1 for hg19; STAR Methods).

In contrast to results from benchmarking against RT-PCR

data, we find that transcript-level methods perform with similar

accuracy to event-level approaches, including Whippet, when

using simulated RNA-seq data (compare Figures 2A and 2B).

This discrepancy is likely due to the artificial nature of the simu-

lation, where the exact transcript-annotations used to generate

the reads are provided to the quantification software. In the anal-

ysis of RNA-seq data from biological samples, the quantification

software will likely be challenged by discrepancies between the

annotation model and the set of true transcripts present in the

sample (e.g., Figure 2C shows that a large percentage of alterna-

tive splice junctions in vertebrate species are not annotated in

Ensembl). To investigate such effects, we simulated RNA-seq

reads with ground-truth J values using one annotation set

(RefSeq Release 84 for hg19) and created an index database

for each quantification program using another annotation set

(GENCODE v25 TSL1 for hg19). Notably, in this comparison

(and the inverse comparison in Figure S3C) there is a 2- to 2.5-

fold increase in error rate for estimating J values using tran-

script-level methods, but minimal change in error rate for any

of the event-level tools, including Whippet (Figures 2B and

S3D). We conclude that differences in transcript reference anno-

tations can confound estimates for J values when using tran-

script-level methods, whereas event-based methods are largely

insensitive to this issue.

The analyses so far used widely employed transcript annota-

tions from human and mouse, which are among the most com-

plete for any species. To assess Whippet’s performance when

analyzing species with less extensively annotated transcripts,

we applied it to RNA-seq data (Brawand et al., 2011) from five

of the same tissues from gorilla, chimp, opossum, and chicken

as well as from mouse and human. While �12% of alternative

exon-exon junctions aligned by Whippet in human and mouse

are unannotated, the percentage of unannotated AS junctions

is in the range of 40%–80% in the other species (Figure 2C).

These observations further indicate that transcript-level tools,

and event-level tools reliant on annotated AS events, fail to

detect a considerable amount of unannotated transcript diversity

in vertebrates. In contrast, Whippet can detect and accurately

quantify AS events involving numerous unannotated splice junc-

tions represented by pairings of combinations of splice sites

from its CSG indices (see also below).

The benchmarks described so far focus on ‘‘simple’’ AS

events, such as single-cassette alternative exons flanked by

pre-defined constitutive exons that have binary splicing out-

comes. However, many AS events involve splice sites that are

variably paired with two or more other sites. Whippet provides

output metrics designed to quantify such AS complexity in two

related ways. First, it classifies AS events into discrete bins of

complexity based on the number of enumerated paths from

the event (i.e., n= dlog2ðpathsÞe such that K(n) can produce at

most 2n spliced outcomes for K1, ., K6; Figure 2D). Second,

it calculates a J-dependent measure of AS complexity using

Shannon’s entropy (i.e., entropy = �Si Ji log2 Ji such that the

maximum entropy for an event in K(n) is n; Figures 2E, S4A,
Molecular Cell 72, 187–200, October 4, 2018 189
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Figure 2. Whippet Benchmarking against Event-Level and Transcript-Level Approaches

(A) Cumulative distribution plot comparing percent spliced in (J) values from RT-PCR data withJ values quantified from RNA-seq data. RT-PCR and RNA-seq

data were generated from the same samples of mouse liver and cerebellum as well as from stimulated and unstimulated human Jurkat T cell line samples

(Vaquero-Garcia et al., 2016). By default, all benchmarked programs were supplied with the full Ensembl GRCh37.73 annotation file unless indicated otherwise

(see Table S4). Cumulative distribution plots describe the proportion of data (y axis) less than or equal to a specified value (x axis). Dotted y axis lines mark the

lower quartile, median, and upper quartile (25%, 50%, and 75%) values, respectively. Cumulative Freq F(x), cumulative distribution function.

(B) Bar plots showing the absolute error rate of quantification algorithmJ values compared to simulated ground truth (i.e., known)J values. Error bars represent

the standard error of the mean. RSEM, RNA-seq by expectation maximization (Li and Dewey, 2011).

(C) Bar graph displaying the fraction of unannotated junctions (with two or more supporting reads) as a total of all junctions identified by Whippet across six

vertebrate species (Brawand et al., 2011). ‘‘Error bars’’ represent the y axis value range for a cumulative number of tissues, one (lower bound of the error bar) to

five (height of the bar). Source of annotation (left to right): panTro4 Ensembl; monDom5 Ensembl; galGal4 Ensembl; gorGor3 Ensembl; hg19 GENCODE v27 tsl1;

mm10 GENCODE VM11 Basic.

(D) Formalization of AS complexity into discrete categories K(n). n, theoretical number of alternative nodes; K(n) = 2n, spliced outcomes for a given AS event.

Schematics of K(n) show constitutive exons (dark gray) and alternative exons (light gray) with curved lines representing all potential exon-exon junctions.

(E) Cumulative distribution of entropy scores (i.e., entropy = �Si Ji log2 Ji) detected by Whippet for simulated AS events of different categories of complexity

according to (D). See Figure 2A legend for a description of cumulative distribution plots.

(legend continued on next page)
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and S4B). This entropic measure conveniently formalizes the

total number of possible outcomes for an event and the degree

of their proportional contribution to the transcriptome in a

read-depth- and read-length-independent manner (Figures

S4C and S4D)

To assess whether Whippet accurately quantifies AS events

with increasing degrees of complexity and entropy, we simu-

lated RNA-seq datasets and corresponding J values for events

in the formalized categories (K1,., K6) of increasing complexity

and distributed entropy (Figures 2D, 2E, and S4E). In contrast to

other methods tested, the accuracy of Whippet-derived esti-

mates for J does not decrease as the complexity and entropy

of the simulated AS events increases. This difference in perfor-

mance is because Whippet has the unique feature among the

event-level approaches tested of employing the EM algorithm

to assign reads that are ambiguously shared between multiple

paths through high-entropy AS events. This capability translates

as a�2-3 fold greater accuracy for Whippet in the quantification

of K2-K6 events than for other tested methods (Figures 2E, 2F,

and S4F).

To further assess Whippet’s performance relative to other

methods, we next investigated whether transcript-level methods

potentially achieve comparable accuracy when provided with a

predefined annotation set that comprehensively represents

complex events. To test this, we built a transcript annotation

set from combinatorial Whippet graph paths (N4 annotation

file, STAR Methods). While this annotation set allows SUPPA2

to detect unannotated AS events, its error rate in estimating J

values is still 4-fold higher than Whippet’s (Figures 2F, S4E,

and S4F).

To experimentally validate Whippet-derived predictions of

high AS-event entropy, RNA-seq data (Raj et al., 2014) from

mouse neuroblastoma (N2a) cells were analyzed and 10 events

with different predicted degrees of entropy and complexity

involving tandem arrays of alternative exons were tested by

RT-PCR (STAR Methods). Notably, 56/61 (91.8%) of the ampli-

fied spliced products were predicted by Whippet, whereas five

(8.2%) of the expected isoforms were not detected. Of the

detected products, 32 (52.5%) are consistent with annotated

isoforms and 24 (39.3%) correspond to novel isoforms (Figures

2G and S5A). Collectively, these data demonstrate that Whippet

is an accurate method for the analysis of both simple and com-

plex AS events.

Efficiency of Whippet
To assess Whippet’s efficiency, we benchmarked speed and

memory usage relative to published AS quantification methods.

When analyzing several paired-end RNA-seq datasets from
(F) Comparison of the ability of different RNA-seq analysismethods to detect AS e

plots show the absolute mean error rate as a function of increasing complexity o

(G) RT-PCR analysis confirms the numerous splice isoforms in N2a cells for AS eve

maximal complexity and entropy (far right). Boxes to right of gels display UCSC

primer amplification products (STARMethods). Colored boxes (blue and yellow), c

show exon structures of analyzed AS events with approximate positions of RT-P

gray, respectively (see legend in D).

(H) Comparison of the log-scaled ‘‘core’’ time requirements (i.e., taking into acco

methods for RNA-seq splicing quantification when analyzing 15 M, 25 M, or 50 M
HeLa cells with increasing read depth (�15 M, �25 M, and

�50 M), Whippet quantifies AS from a raw paired-end 25 M

RNA-seq read dataset in 43 minutes while using less than

1.5 GB of memory on a typical cluster node with a single core

(Dual-Core AMD Opteron(tm) Processor 8218, 2.5 GHz, 60GB

RAM, 1,024KB cache). This represents a considerable increase

in performance over other tested event-level tools, and is of

comparable performance to transcript-level methods (Figures

2H, S5B, and S5C; Table S2). For example, MISO, the most

highly cited event-level tool, in combination with the read aligner

STAR, took days and used 30GBofmemory to analyze the same

data (Figures 2H and S5C), whereas the fastest transcript-level

methods took approximately 20 minutes. It is important to note

that when provided with annotation sets for complex AS events

(e.g., N4 annotation file) the runtime and memory usage of tran-

script-level methods were greater than that of Whippet (Figures

2H and S5C). Moreover, on a personal laptop with a solid-state

hard drive (Macbook Pro 3.1 GHz Intel i7), Whippet quantified

the �25 M dataset in 15 minutes using downloaded data files

and in 31 minutes when streaming data from the internet after

inputting the SRA identifier. The considerably longer time taken

to analyze the same data by MISO and some of the other

event-level tools may be influenced by the hardware used to

run these programs. The unique features ofWhippet thus obviate

the use of high-performance computational clusters for the

quantitative profiling of AS using RNA-seq data.

Taken together with the assessment of accuracy, the results

indicate that Whippet offers advantages over other methods in

terms of its capacity to reliably and efficiently detect and quantify

AS events.

Detection of High-Entropy, Tissue-Regulated AS Events
Because previously described tools were not designed for the

formalized quantitative profiling of AS complexity, we used

Whippet to investigate the prevalence and possible biological

relevance of high-complexity AS events in mammalian transcrip-

tomes. To this end, we applied Whippet to an analysis of 60

diverse human and mouse tissue RNA-seq datasets (Table S3;

Figures 3A and S6A). Remarkably, of more than 13,000 analyzed

human protein coding genes, 42.68% harbor an AS event pre-

dicted to have an entropy >1.0 (i.e., two or more expressed iso-

forms) in at least one tissue (Figure S6B; see STAR Methods).

Moreover, 4,101 (30.1%) of these genes co-express at least

two major isoforms at similar levels in one or more of the same

tissue (Figures 3B and S6C; STAR Methods). The majority

(�20%) of events are predicted to undergo substantial tissue-

dependent changes in splicing entropy (Figure 3C) without con-

current changes in expression of the corresponding genes
vents from simulated reads (STARMethods) of complexity as defined in (D). Bar

f AS. Error bars indicate standard error. J, percent spliced in.

nts of increasing levels of complexity andmatchingWhippet predictions for the

(left, blue) and Whippet (right, yellow) in silico predictions based on expected

orrect predictions; black boxes, possible missed predictions. Diagrams below

CR primers. Predicted constitutive and alternative exons are in dark and light

unt time spent using multiple cores) for running Whippet relative to published

paired-end RNA-seq read datasets (see STAR Methods and Table S3).
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Figure 3. Tissue Regulation of High-Entropy Events Detected using Whippet

(A) Symmetrical heatmap of pairwise correlations of normalized splicing entropy scores across multiple human tissues. Heatmap shows affinity propagation

clustering of pairwise similarities between entropy scores. Colored bars surrounding heatmap indicate clusters defined by the dendrogram. Darker blue, stronger

correlation in splicing entropy; lighter blue, weak or no correlation. r1, replicate 1; r2, replicate 2.

(B) Plot of ranked genes (x axis) ordered by their maximum minor:major isoform relative expression ratio across all tissues (y axis) at different minimum cut-offs

(color scale), for the number of reads mapping to exon-exon junctions corresponding to the AS event. Dashed line, 45:55% ratio cutoff (equivalent to a mi-

nor:major ratio of 0.818; see STAR Methods).

(C) Bar plot displaying maximum change in splicing entropy per gene (n = 11,421), revealing that >20% of genes exhibit extensive variance in AS entropy across

human tissues. Genes lacking major changes in entropy are not shown.

(D) Scatterplots of change in AS entropy across tissues versus change in expression level of the corresponding genes. Red line, best-fit linear regression.

R-squared value calculated using Pearson correlation coefficient.

(E) Functional analysis for GO, REACTOME, and KEGG functional categories of geneswith large changes in splicing entropy (>2.0) across human tissues. P value,

corrected FDR hypergeometric test.
(Figure 3D; R2 = 0.074, Pearson correlation). These results

contrast with previous proposals that the vast majority of

mammalian genes express a single major splice variant (Gonzà-

lez-Porta et al., 2013; Tress et al., 2017), and instead are consis-

tent with data indicating that a substantial fraction of genes ex-

press multiple major isoforms either within or between different

cell and tissue types (Tapial et al., 2017; Vaquero-Garcia et al.,

2016; Wang et al., 2008). However, new isoforms generated by

high entropy AS events detected by Whippet further increase

the estimated fraction of genes predicted to express multiple

major isoforms compared to previous estimates (e.g., up to

�40% versus �18% in Tapial et al., 2017). Supporting the

possible biological relevance of these AS events, the corre-

sponding genes are enriched in functions associated with the

cytoskeleton, extracellular matrix organization, cell communica-
192 Molecular Cell 72, 187–200, October 4, 2018
tion, signaling, and muscle biology (Figure 3E, p values < 0.05;

FDR corrected).

To further investigate the possible significance of high-entropy

AS events detected by Whippet, we analyzed their evolutionary

conservation using RNA-seq data from six of the same tissues

from seven vertebrate species (Brawand et al., 2011), comparing

entropy values for the orthologous exons (1,304 ‘‘low-entropy’’

[<1.0] and 369 ‘‘high-entropy’’ [>1.5] exons; Figures 4A, S6D,

and S6E) in each species. This revealed a significantly greater

concordance in both J and entropy values for orthologous AS

events between the analyzed species than expected by chance

when compared to randomly permuted sets of exons from the

same data (Figures 4B and 4C, low-entropy AS events: p <

2.2 3 10�16; high-entropy AS events: p < 4.3 3 10�4, Kolmo-

gorov-Smirnov test; Figures S6F and S6G; see STAR Methods).
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Figure 4. Alternative Splicing Entropy Is Evolutionarily Conserved, and High-Entropy Events Are Potentially Translated

(A) Distribution of the number of unique conserved exons with genomic coordinate ‘‘liftover’’ across at least three vertebrate species (human, chimp, gorilla,

mouse, opossum, platypus, and chicken). Conserved exons are counted in discrete bins by their maximum entropy in any of the species.

(B) Cumulative distribution plots comparing the cross-species variance of entropy values among the same tissue in seven vertebrates (at least three species

present per event) as compared to a permuted null control. See Figure 2A legend for a description of cumulative distribution plots.

(C) Distributions for the cross-species variance of entropy values (y axis) for conserved exons, binned by maximal entropy values (x axis) and compared to a

control set of the same data but with permuted AS event labels for each species (color scale). All two-sided KS-test p values are less than epsilon (2.23 10�16),

except for the bin [1.5,3] whose p value was 4.6 3 10�4. Bottom: same as top, except the distributions plotted contain the cross-species variance of J values

(y axis) for the same conserved exons. All two-sided KS-test p values are less than epsilon (2.23 10�16), except for the bin [1.5,3] whose p value was 4.33 10�2.

Boxplots display the interquartile range as a solid box, 1.5 times the interquartile range as vertical thin lines, the median as a horizontal line, and the confidence

interval around the median as a notch.

(D) Violin plots of the distribution of splicing entropy in different cellular compartments and ribosome (monosome and polysome) fractions. Kernel density is

displayed as a symmetric curve, with white dots indicating the median, black box the interquartile range, and black lines the 95% confidence interval.
Thus, overall, the degree of entropy of low- and high-complexity

AS events detected and quantified by Whippet is conserved

across vertebrate species, implying that these patterns may

often be functionally important.

We next asked whether these events are potentially trans-

lated. Due to the extremely limited coverage of currently avail-

able mass spectrometry data (Blencowe, 2017), Whippet was

applied to RNA-seq data from HeLa mono- and polysomes as

well as from whole-cell, nuclear, and cytosolic fractions (Floor

and Doudna, 2016). This analysis reveals comparable distribu-

tions of AS event entropy across all samples (Figure 4D; d <

0.25, Cohen’s D statistic, nuclear versus high polyribosome),

suggesting that high-entropy AS events contribute substantially
to the translated transcriptome. Furthermore, the enrichment of

high-entropy AS events within the 50 UTRs of transcripts (Fig-

ure S6H, p < 4.373 10�38, Fisher’s exact test) suggests possible

roles in the regulation of translation.

High-Entropy Alternative Splicing Regulates Genes with
Extensive Domain Repeats and Disordered Regions
Given previous evidence for important roles of AS in rewiring pro-

tein-protein interaction networks, among other functions (Buljan

et al., 2012; Ellis et al., 2012; Yang et al., 2016), we next investi-

gated whether increasing levels of AS-event entropy are associ-

ated with specific protein structural features. We observe a

significant monotonic increase in the frequency of overlap with
Molecular Cell 72, 187–200, October 4, 2018 193



A B
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Figure 5. High-Entropy Splicing Events Encode Unique Protein Features

(A) Cumulative distribution plots showing frequency of overlap of AS events (with different degrees of entropy) within intrinsically disordered regions (IDRs) of

proteins (left), structured single protein domains (center), and structured tandemly repeated protein domains (right). See Figure 2A legend for a description of the

cumulative distribution plots (n > 368).

(B) Bar plot showing frequency at which exons undergoing AS with different degrees of entropy (based on Whippet analysis of tissue RNA-seq data in Figure 3)

show evidence of duplication. Numbers of AS events analyzed indicated above plots. See Figure 5A for color legend.

(C) Domain diagram for Lrp8 (low-density lipoprotein receptor-related protein 8) based on SMART annotation. Dotted boxes describe area of proteins undergoing

high-entropy splicing in different tissue types. Domain diagram below illustrates exons undergoing splicing within N2a cells and position of primers for RT-PCR

validation below. CNS, central nervous system; E, embryonic day; LDL, low-density lipoprotein; EGF, epidermal growth factor.

(D) RT-PCR analysis confirms the presence of putative Lrp8 spliced isoforms in N2a cells. Diagrams below show exon structures of analyzed AS events with

approximate positions of RT-PCR primers indicated. See Figure S5 for full gel.
intrinsically disordered regions as a function of increasing en-

tropy of AS events (Figure 5A; p < 1.02 3 10�43, Mann-Whitney

U test, low-entropy [<1.0] versus highest-entropy [>2.0] events;

Figure S7A). As expected, an inverse trend is observed for

overlap with structured domains (Figure 5A, p < 1.78 3 10�41,

Mann-Whitney U test). However, an interesting exception is

that highest-entropy AS events (entropy > 2.0) display significant

overlap with tandem repeat domains (Figure 5A, p < 2.14 3

10�05, Mann-Whitney U test; Figure S7A), particularly nebulin-

like and epidermal growth factor (EGF)-like domains (p values <

0.05, Fisher-exact test). Further analysis of the highest-entropy

(>2.0) AS events overlapping tandem protein domain repeats re-

veals that they are significantly more likely to arise from exon

duplication than are lower-entropy (<2.0) events (Figure 5B,

p < 4.57 3 10�42, Fisher’s exact test; Figures S7B and S7C).

As an example, high-entropy AS events overlap two classes of

tandem repeat domains—LDL-receptor class A and EGF-like

domains—within the low-density lipoprotein receptor-related

protein 8 (Lrp8). These events were confirmed by RT-PCR anal-

ysis (Figure 5C). Moreover, supporting their likely functional

importance, one of them is differentially regulated by the neural-

and muscle-enriched splicing factor Rbfox2 (Figure 5D). These
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data thus provide evidence for important roles for Whippet-de-

tected, high-entropy AS events in the expansion of proteomic

diversity, principally through changes to intrinsically disordered

protein regions and combinatorial changes to the composition

of tandem arrays of specific classes of protein domains.

High-Entropy ASEvents Display Prototypical Alternative
Splicing Signals
We hypothesized that high-entropy AS events may be associ-

ated with specific sequence features that facilitate their complex

patterns of regulation. To investigate this, we binned AS events

by entropy and compared the strengths of their 30- and 50-splice
sites, flanking intron lengths, and exonic splicing enhancer (ESE)

and silencer (ESS) motif densities. Interestingly, the highest-en-

tropy AS events show significant decreases in 30- and 50-splice
site strength compared to low-entropy AS events (Figure 6A;

p < 3.73 3 10�4 and 1.83 3 10�3, Mann-Whitney U test). Addi-

tionally, we observe monotonic decreases in flanking intron

length (Figure 6B, p < 1.783 10�18, Mann-Whitney U test, high-

est versus lowest entropy events) and ESS motif density (Fig-

ure 6C; ESS: p < 6.06 3 10�05; Mann-Whitney U test, highest

versus lowest entropy events) as a function of increasing
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Figure 6. Exons within High-Entropy Splicing Events Have Unique Splice Site Features

(A) Plots showing the cumulative distribution of 30-splice site (30ss) strength (left) and 50-splice site (50ss) strength (right) estimated using MaxEntScan (Yeo and

Burge, 2004) and binned by maximum splicing entropy scores (bottom). The median 30ss strength for AS events with different degrees of splicing entropy are

plotted as colored lines (top). See Figure 2A legend for a description of cumulative distribution plots (n > 1,064).

(B) Boxplot displaying the distribution of exon length (top) and intron length (bottom) surrounding exons binned bymaximumentropy of AS. See Figure 6A for color

legend. nt, nucleotide; n as in Figure 6A. See Figure 4C for descriptions of boxplots.

(C) Cumulative distribution plots of exonic splicing regulatory elements in AS events with different degrees of AS event entropy. Scores calculated based on the

density of exonic splicing enhancers (top) and exonic splicing silencers (bottom) per nucleotide (see STAR Methods). Motifs extracted from Ke et al. (2011). See

Figure 6A for color legend and Figure 2A legend for a description of cumulative distribution plots. n as in Figure 6A.

(D) Mechanistic model for the regulation of low-entropy (simple binary) AS events versus high-entropy (complex) AS events by cis-regulatory elements and other

sequence features. Exons are represented by boxes and introns by lines, with cis-regulatory elements and relative splice-site strength indicated by color.
entropy. In contrast, the density of ESE elements displayed a

monotonic increase between low- and high-entropy AS events

(Figure 6C; ESE: p < 4.203 10�06, Mann-Whitney U test, lowest

versus highest entropy events). These results suggest that weak

splice sites, reduced intronic length, and altered frequencies of

exonic splicing elements, are important features underlying the

regulation and function of high-entropy AS events (Figure 6D).
Global Increases in High-Entropy AS in Cancer
Aberrant splicing is a hallmark of cancer and contributes to

numerous aspects of tumor biology (Ladomery, 2013; Oltean

and Bates, 2014). Cancer-associated changes in AS have

been linked to altered expression of RNA binding proteins,

some of which are oncogenic or act as tumor suppressors, as

well as to splicing-sensitive disease mutations that impact the
Molecular Cell 72, 187–200, October 4, 2018 195



levels or activities of other cancer-associated genes (Sebestyén

et al., 2016; Sterne-Weiler and Sanford, 2014). Despite extensive

evidence for altered AS in cancer (Climente-González et al.,

2017; Dvinge et al., 2016), the extent to which these changes

relate to altered levels of splicing complexity has not been previ-

ously determined. Accordingly, we applied Whippet to compare

AS entropy using RNA-seq data (Table S3) from 15 matched

tumor and control liver samples of patients with hepatocellular

carcinoma (HCC), the third leading cause of cancer deaths

worldwide. Remarkably, this analysis revealed a significant and

reproducible (i.e., between replicate samples) increase in AS

event entropy and number of unannotated alternative exon-

exon junctions detected in tumor compared to control samples

(Figures 7A–7C; Figure S7D; p < 4.30 3 10�18, Mann-Whitney

U test), with only a relatively small degree of correlating change

in the expression levels of the corresponding genes (Figure S7E;

R2 = 0.412, Pearson correlation coefficient). Genes with the

largest AS entropy changes display significant enrichment for

functions known to be dysregulated in liver cancer, including

DNA repair and cell-cycle regulation (Figure 7D; p values <

0.05; FDR corrected).

Further investigation revealed AS events previously identified

as aberrant in cancer samples (Figure 7E), including those asso-

ciated with overexpression of the splicing regulator SRSF1

(Anczuków et al., 2015; Das and Krainer, 2014). Consistent

with this observation, differential gene expression analysis re-

vealed a number of RNA-binding proteins, including SRSF1,

that are significantly overexpressed in tumor compared to con-

trol samples (Figures 7F, 7G, and S7F; DESeq2, FDR corrected

p values < 0.01). To further investigate the possible role of

SRSF1 overexpression in the expansion of AS entropy observed

in the cancer samples, we used Whippet to analyze RNA-seq

data (Anczuków et al., 2015) from an MCR-10A cell line

overexpressing SRSF1. This revealed a significant increase in

high-entropy AS events associated with SRSF1 overexpression

(Figure 7H; p < 9.413 10�9, Mann-Whitney U test, compared to

control) and a significant overlap with events differentially

regulated between tumor versus normal tissues (Figure 7I; p <

2.09 3 10�5, Fisher’s exact test). These data thus indicate that

overall splicing entropy increases in specific tumor types in

response to changes in the expression of oncogenic splicing

regulators, such as SRSF1. These results further illustrate how

Whippet’s unique capacity for the efficient and quantitatively

accurate profiling of high entropy AS patterns can provide insight

into how transcriptomes are altered in different biological

contexts.

DISCUSSION

Advancements in RNA-seq analysis have involved the genera-

tion of tools that estimateJ values from transcript-level expres-

sion information (Trincado et al., 2018). While such methods are

efficient, we observe that they are subject to increased error

rates as a result of inaccuracies in standard transcript annotation

models. In contrast, event-level tools are insensitive to distal

annotation inaccuracies, since they only consider reads that

directly map to splice junctions, exons, or introns forming an

AS event. In the present study, we describe Whippet, a graph-
196 Molecular Cell 72, 187–200, October 4, 2018
and indexing-based, event-level approach for the rapid and

accurate quantitative profiling of AS. Whippet applies the

concept of lightweight algorithms (Bray et al., 2016; Patro

et al., 2014) to splicing quantification using RNA-seq data. As

such, it eliminates the requirement for extensive computational

resources typically required for read alignment steps. It further

affords an unprecedented degree of accuracy in the profiling

of complex AS events, in part through the use of entropy as

metric for the formalized analysis of AS complexity. Collectively,

these attributes of Whippet facilitated the discovery and charac-

terization of transcriptomic complexity and associated features

in the present study.

Our results indicate that high-entropy AS events occur more

frequently in vertebrate transcriptomes than previously appreci-

ated (Nellore et al., 2016; Vaquero-Garcia et al., 2016), affecting

up to 40% of human genes. In contrast to previous proposals

that the vast majority of mammalian genes express a single ma-

jor splice isoform (Gonzàlez-Porta et al., 2013; Tress et al., 2017),

our results from employing Whippet reveal that at least one-third

of human and mouse genes simultaneously express multiple

major isoforms. The results further suggest that many of these

events are biologically significant, since their AS entropy levels

are frequently tissue-regulated and conserved and the corre-

sponding variant transcripts are highly expressed.

Previously documented examples of high-entropy AS events

include those that control the biophysical properties of giant pro-

teins that form muscle fibers (Buck et al., 2010; Li et al., 2012).

Many of the high-entropy events detected by Whippet are also

reminiscent of well-studied examples in other systems, such

as the splice variants generated by tandem arrays of alternative

exons in the Drosophila DSCAM gene (Bolisetty et al., 2015).

In this example, high-entropy AS events overlap tandemly

repeated immunoglobulin-like domains that function as interac-

tion surfaces in neural circuit assembly (Hattori et al., 2008). Our

results suggest that the targeting of tandemly repeated domains

by high-entropy AS may represent a widely used mechanism to

modulate the functions of multi-domain proteins. We further

provide evidence that large repertoires of transcripts from

high-entropy AS events are particularly prominent in post-mitotic

tissues, and likely contribute to intricate networks of regulation

and cell-cell interactions in these tissues.

Alterations in splicing by spliceosomal gene mutations

and overexpression of RBPs contribute to the transcriptomic

dysfunction characteristics of myelodysplastic syndromes and

related cancers (Inoue et al., 2016). We demonstrate a significant

increase in AS event entropy in hepatocellular carcinoma,

affecting genes that function in DNA damage and spindle forma-

tion, and relate these changes to the mis-regulation of the

splicing factor SRSF1. These data may reflect an overall loss

of splicing fidelity in cancers and exemplify how the formalization

of AS entropy is important when evaluating changes in global

splicing patterns (Ritchie et al., 2008). For example, such mea-

sures of entropic splicing change may be valuable in future diag-

nostic techniques for precision medicine.

In summary, Whippet enables the efficient and accurate

profiling of simple to complex AS events. As such, it is expected

to significantly facilitate future biomedical research. Whippet’s

ability to rapidly quantify raw read data as a stand-alone
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Figure 7. Increases in High-Entropy Splicing in Cancer Are Associated with Overexpression of the Essential Splicing Factor SRSF1

(A) Boxplot showing percentage of high-entropy AS events (> 1.5) within each replicate identified fromWhippet analysis of RNA-seq data comprising 15matched

tumor and control samples. Black dots represent individual datasets. See Figure 4C for descriptions of boxplots.

(B) Cumulative proportion of unannotated alternative splice junctions (with two or more supporting reads) identified across matched tumor and control RNA-seq

samples. See Figure 2A legend for description of cumulative distribution plots.

(C) Heatmap of splicing entropy values for events with significant changes (p < 0.05, Mann-Whitney U test) between tumor and control samples (n = 657).

(D) Bar plots of enriched functional categories for genes harboring AS events with significant entropy changes (p values < 0.05, Mann-Whitney U test) from (C)

identified from RNA-seq analysis of 15 matched tumor and control samples. P values were corrected using false discovery rate (FDR) multiple hypothesis testing

correction (n = 657).

(E) Schematic diagrams of two genes showing significant changes in AS event entropy between tumor andmatched control samples. Domain structure extracted

from SMART database. Light blue arrows and boxes indicate increased occurrence of splicing regulation in tumor samples. For BIN1, dashed boxes indicate

protein regions predicted to be regulated by splicing in control (gray box) and cancer samples (cyan box). EZH2, Histone-lysine N-methyltransferase EZH2; BIN1,

Myc box-dependent-interacting protein 1.

(F) Differential gene expression analysis for selected RNA-binding proteins (GO:0000380) identified from RNA-seq analysis of 15 matched tumor and control

samples. Genes with blue bars display reduced expression in cancer samples, red bars show increased expression in cancer samples, and gray bars show no

significant difference between control and tumor samples.

(legend continued on next page)
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software package on a personal computer further renders

genome-wide analyses of AS more accessible to the scientific

community. In this regard, we believe thatWhippet will represent

a valuable tool until long-read sequencing protocols (Byrne et al.,

2017; Tilgner et al., 2018) offer comparable sequencing depth

and efficiency as short-read analysis methods.
Limitations
A limitation of Whippet is that it only detects and analyzes AS

events represented by splice sites in a CSG index. However, it

can detect and quantify previously unknown AS events repre-

senting novel combinations of splice junctions derived from the

indexed splice sites. Moreover, CSG indices can be supple-

mented beyond standard annotation sets with new splice sites

(and therefore novel exons) mined using de novo spliced read

aligners (Dobin et al., 2013; Kim et al., 2015; see Methods S1

and Figure S1E). This approach is expected to be useful in

the analysis of AS from poorly annotated species as well as

disease-altered transcriptomes harboring aberrant splicing

patterns.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine RNAiMAX Invitrogen Cat# 13778030

SMARTpool siRNAs Dharmacon N/A

Critical Commercial Assays

One-Step RT-PCR QIAGEN Cat# 210210

RNeasy Mini Kit QIAGEN Cat# 74104

Experimental Models: Cell Lines

Human: HeLa N/A N/A

Mouse: Neuro2A ATCC ATCC CCL-131

Deposited Data

Public RNA-seq data used in paper Table S3 Table S3

Oligonucleotides

Slmap:

Forward:GAGCGCACTCAGGAAGAGTT

Reverse: TTCCTTTGCTTTTGCCTGAT

This paper N/A

Slmap (Control):

Forward:GAGCGCACTCAGGAAGAGTT

Reverse:TTCCTGCTCAGTCATTTCAAAC

This paper N/A

Eps15l1:

Forward:TTGGAACCCTAGACCCCTTT

Reverse:CTTTTTCACTCTCCCGCTTG

This paper N/A

Asap1:

Forward:GCCCGCGATGGAATAATG

Reverse:TGAGGAAGAGGCACAGGTCT

This paper N/A

Eml4:

Forward:TCCTGTATAACCAATGGAAGTG

Reverse:CATTGTAATTGGCCGACCTC

This paper N/A

Atp8a1:

Forward:CGGTCGTTACACAACACTGG

Reverse:GGCCAAGTTCCTCATTCAGA

This paper N/A

Sfl1:

Forward:TCATGCCTCACAAAACTGGA

Reverse:CCATAGCCAGCCTCTGTACC

This paper N/A

Mapt:

Forward:AATGGAAGACCATGCTGGAG

Reverse:GCCACACTTGGAGGTCACTT

This paper N/A

Lrp8:

Forward:CGGAGAGAAGGACTGTGAGG

Reverse:CAGTGCAGATGTGGGAACAG

This paper N/A

Gtf2ird1:

Forward:CCCCAACACCTATGACATCC

Reverse:CGCTTGGGAATGTTGTCTTT

This paper N/A

Rbms3:

Forward:GAGACAGGGTCAGAGCAAGC

Reverse:AAACCGGAGGCCAACTAACT

This paper N/A

Cask:

Forward:AGGGAAATGCGAGGGAGTAT

Reverse:GTCATCCTTGGCTGGATCAT

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Whippet This paper https://github.com/timbitz/Whippet.jl

Whippet_TPM This paper https://github.com/timbitz/Whippet.jl

Supplemental scripts and simulated data This paper http://figshare.com/articles/

Whippet_analysis_scripts/5711683

Julia N/A http://www.julialang.org

BioJulia N/A https://github.com/BioJulia

MAJIQ (Vaquero-Garcia et al., 2016) https://majiq.biociphers.org/

rMATS (Wang et al., 2017) http://rnaseq-mats.sourceforge.net/

MISO (Katz et al., 2010) http://genes.mit.edu/burgelab/miso/

VAST-TOOLS (Tapial et al., 2017) https://github.com/vastgroup/vast-tools

BENTO (Xiong et al., 2016) https://github.com/PSI-Lab/BENTO-Seq

SUPPA (Trincado et al., 2018) https://github.com/comprna/SUPPA

Kallisto (Bray et al., 2016) https://pachterlab.github.io/kallisto/

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

HISAT (Kim et al., 2015) https://ccb.jhu.edu/software/hisat

TOPHAT (Kim et al., 2013) http://ccb.jhu.edu/software/tophat

BEERS (Grant et al., 2011) http://cbil.upenn.edu/BEERS/

Polyester (Frazee et al., 2015) https://github.com/alyssafrazee/polyester

RSEM (Li and Dewey, 2011) https://github.com/deweylab/RSEM

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

IUPred (Dosztányi et al., 2005) http://iupred.enzim.hu/

MaxEntScan (Yeo and Burge, 2004) http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq.html

apcluster (Bodenhofer et al., 2011) https://cran.r-project.org/web/packages/

apcluster/index.html

PTRStalker (Pellegrini et al., 2012) http://bioalgo.iit.cnr.it/index.php?pg=ptrs

SEG (Wootton, 1994) http://www.biology.wustl.edu/gcg/

seg.html

Image Lab BioRad Cat# 1709691

Other

Parameters for software used Table S7 Table S7

Supplemental Methods Methods S1 Methods S1

Additional Benchmarks Methods S1 Methods S1
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests should be directed to and will be fulfilled by Lead Contact Benjamin Blencowe (b.blencowe@utoronto.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and Cell Culture
Neuro-2A (N2A) cells are a male, mouse neuroblastoma cell line, and were grown in DMEM supplemented with 10% FBS, sodium

pyruvate, non-essential amino acids and penicillin/streptomycin. Cells were maintained at 37�C with 5% CO2. An authenticated

N2A cell line was purchased from ATCC (catalog number: ATCC CCL-131).

Short interfering RNA knockdown and RT-PCR
Mouse Neuro2A (N2A) cells were transfected with SMARTpool siRNAs (Dharmacon) (50nM final concentration) using Lipofectamine

RNAiMAX (Invitrogen), as recommended by the manufacturer. A non-targeting siRNA pool (siNT) was used as a control. Cells were

harvested at 48 hours post transfection and total RNA was extracted using RNeasy columns (QIAGEN). Semi-quantitative RT-PCR
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was performed using the QIAGEN One-Step RT-PCR kit as per the manufacturer’s instructions, using 50ng total RNA in a 20uL re-

action. Products were resolved on 2-4%agarose gels and bandswere quantified using Image Lab (BioRad) or ImageJ. Predictions of

band sizeswere based on in silicoPCR using data from the UCSCGenomeBrowser (http://genome.ucsc.edu) server after combining

exons fromWhippet predictions. Only predictions supported bymultiple sources of evidence (i.e. RT-PCR,Whippet and UCSC) were

included in figures (see Key Resources Table for details of primers used).

METHOD DETAILS

RNA-seq simulation
To simulate RNA-seq reads transcriptome wide, we used RSEM (Li and Dewey, 2011) to quantify the benchmark dataset

SRR2300536 (a �25M read depth RNA-seq dataset from HeLa cell line). With the RSEM parameters and gene expression distribu-

tions obtained from this quantification (RSEM estimated_model_file, estimated_isoform_results, and theta), we used RSEM’s rsem-

simulate-reads to simulate 50M paired-end reads for each of two hg19 annotation builds: Gencode v25 TSL1, and RefSeq Release

84. In order to calculate ‘ground truth’ (i.e., known) J values for Whippet nodes, we used the Whippet_TPM method on the ground

truth isoform TPM values provided by the RSEM simulator.

To investigate the accuracy and capability of AS quantification tools, we simulated transcripts with AS-events of increasing

complexity. To formalize AS events into discrete classes of complexity K(n) = 2n splicing-outcomes for K1 through K6, we randomly

chose 500 CSGs of each complexity class with at least n total internal nodes (not including nodes with TxStart or TxEnd node bound-

aries). From those CSGs, we randomly chose a set of n consecutive internal nodes and created partial transcript sequences from the

first internal node to the last internal node, with all combinations of n internal nodes. In the case of nodes with Soft boundary types,

less than 2n total combinations were created, since nodes whose incoming edge is a Soft 50 Splice Site cannot be included in the

transcript unless the adjacent upstream node is also included. Similarly, a node whose outgoing edge is a Soft 30SpliceSite requires

the adjacent downstream node to be included. Given the six sets of simulated events of complexity K(n) (where n = 1,., 6), we used

polyester (Frazee et al., 2015) (read length = 100, error rate = 0) to simulate RNA-seq reads from the simulated transcripts for each

gene (see Methods S1 for extended details).

Combinatorial gene model
To investigate engineering de novo AS analysis capability for transcript-level methods, we utilized Whippet’s CSGs (in the Whippet/

bin/simulation/whippet-combinatorial.jl script) to enumerate combinatorial graph paths for each pair of TxStart and TxEnd bound-

aries. While we successfully simulated combinatorial paths for a sliding window of four, five, six, eight, and ten nodes, we used

four nodes throughout the manuscript (referred to as the ‘N4 annotation Gene Transfer Format [GTF]’). This was the largest number

of nodes in a sliding window for which, due to memory usage issues, we were able to successfully build indices using transcript-level

methods.

Benchmarking
All genomic and transcriptomic sequences, as well as GTF files, were downloaded from the Ensembl database. The following

genome builds were used: Hg19 GRCh37.p12 (v73) and Mm10 GRCm38.p4 (v84) using the full Ensembl GRCh37.73 annotations

for all programs unless otherwise stated in the analysis or in the online instruction manual for that program (e.g., Figure 2A uses

the full Ensembl annotation sets by default, while Figure 2B restricts each program to GENCODE v25 TSL1 or RefSeq Release 84

as specifically stated; see Table S4). Exon annotations (including genomic annotations) were downloaded from Ensembl using

BioMart.

All benchmarking was performed on a Sun Microsystem X4600M2 server with 8 AMD Dual-Core 8218 CPU @2.6GHz, total 16

cores and 64GB RAM. The local hard disk was SATA 73GB, 10K RPM. Identical paired-end HeLa data of increasing read-depths

were employed for all resource usage benchmarking (see Table S3). All programs were run with default settings with additional set-

tings described in Table S4. The default linux package ‘‘time’’ (/usr/bin/time – e.g., http://man7.org/linux/man-pages/man1/time.1.

html) was used to measure the resource usage of each program. See Methods S1 for extended details, and Tables S2 and S5 for

results.

Benchmarking of mapping success was performed using the program Benchmarker for Evaluating the Effectiveness of RNA-Seq

Software (BEERS) (http://www.cbil.upenn.edu/BEERS/) and simulated reads based on hg19 GRCh37.73 Ensembl transcriptome

data. Simulated reads were generated using ‘‘reads_simulator.pl’’ with substitution frequency (parameter ‘‘-subfreq’’) error rates

of 0.001, 0.005 and 0.01, respectively and a read depth of 1,000,000. For resource and mapping benchmarks the program ‘‘time’’

was used (see above and Methods S1 for details, and Table S6 for results).

RT-PCR and RNA-seq data used in comparisons ofJ values were generated from samples prepared frommouse cerebellum and

liver tissue, as well as from stimulated and unstimulated human Jurkat T cell line cells (Vaquero-Garcia et al., 2016). DJ values were

calculated by comparing J values between the mouse cerebellum and liver tissues samples or between the stimulated and unsti-

mulated human Jurkat T cells. Only simple events (as defined by MAJIQ as involving a total of three exon-exon junctions) were

included in the analysis.
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Tissue-wide analysis of splicing
Low-entropy AS events are defined by an entropy value less than 1.0. High entropy events (for description of entropy of AS events see

Figure 2D, Figures S4C and S4D and Methods S1) are defined as events with an entropy score of greater than 1.5, and differential

entropy requires a change of entropy of greater than 1.0 (unless stated). Highest entropy events are defined as those greater than 2.0.

Only events with a Whippet confidence interval width of less than 0.2, andJ values of over 0.05 and under 0.95 were included in the

analyses. Analyses were limited to core exons (CE), as defined byWhippet. An exception to this rule is when assessing the fraction of

genes co-expressing two or more major isoforms. For this analysis, due to observation in Figure S6B, we used a minimum read cut-

off of 20 in main text (see Figures 3B and S6C for additional cut-offs).

Tissue RNA-seq data analyzed in Figure 3 and Figure S6 were from the Illumina Bodymap2 dataset and supplemented with human

tissue RNA-seq data from Kunming Institute of Zoology (Table S3). The maximum change in splicing entropy between tissues is the

comparison of the lowest entropy of an exon/node compared to the highest entropy for the same exon/node between tissues. This is

therefore not ameasure of tissue-specificity but rather ameasure ofmaximum variability for the number of well-expressed exon-exon

junctions an exon may have across tissues.

The analysis of how many genes co-express at least two isoforms at similar levels was calculated using the above tissue specific

data. For an event to be considered as co-expressed the two principal isoforms must be expressed at similar levels (within a 10%

range). Expression was assessed based on assigned reads. All types of splicing events were considered.

Tissue-wide heatmaps were generated by affinity propagation clustering using the R package (apcluster) with pairwise similarities

as correlations (corSimMat and r = 2) and negative correlations taken into account.

Feature analysis of high-entropy AS events
For all amino acid residues in a protein, a score for predicted intrinsic disorder is computed using IUPred (Dosztányi et al., 2005).

Amino acid residues with a score larger than 0.4 were considered as disordered. For each coding exon the proportion of total res-

idues that are predicted to be disordered was estimated. Domain data extracted from SMART database (Letunic et al., 2015).

MaxEntScan (Yeo and Burge, 2004) was used to estimate the strength of 30 and 50 splice sites. 50 splice site strength was assessed

using a sequence including 3nt of the exon and 6nt of the adjacent intron. 30 splice site strength was assessed using a sequence

including �20nt of the flanking intron and 3nt of the exon. Exonic splicing silencer or exonic splicing enhancer densities were ex-

tracted from motifs quantified in (Ke et al., 2011). To calculate exonic splicing enhancer and silencer densities, all motifs defined

by Ke et al. were summed together and normalized by the number of exonic nucleotides.

Analysis of cancer data
Hepatocellular carcinoma (HCC) and control data were from a transcriptome profiling study undertaken by the University of Hong

Kong (see Table S3). For Figure 7A, all events with sufficient reads (n > 10) across multiple samples (more than 2) that showed

evidence of AS (0.05 < J<0.95) were included in the analysis. These criteria were used throughout Figure 7, with the exception of

Figure 7B, when all exons required at least 2 reads to support identification. For Figure 7B, unannotated alternative exon-exon junc-

tions were extracted from the Whippet ‘.jnc’ file.

Differential complexity between control and tumor samples across 15 replicates described in Figure 7C was assessed. Only sam-

ples with a significant difference (Mann-Whitney U test p < 0.01) and amedian entropy difference between control and tumor samples

of at least 0.5 were considered differential. To identify differentially expressed genes, read counts for transcripts (calculated by

Whippet) were combined and DESeq2 (adjusted p value < 0.05) was used. SRSF1 overexpression data (Anczuków et al., 2015)

was analyzed by Whippet. Only events with high entropy (> 1.5) in either the control or overexpression study were included in the

analysis. Events with detected aberrant splicing in Figure 7I are displayed in Figure 7C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Contiguous splice graph index
The central data structure underlying the alignment and quantification capabilities ofWhippet is the Contiguous Splice Graph (CSG).

This directed acyclic (i.e., except when circular splicing detection is enabled) graph structure is composed of all non-overlapping

exon intervals, which are each defined as separate ‘nodes’. Nodes in the CSG are connected by edges, defined as either splice junc-

tions or adjacent exonic regions. All nodes are arranged consecutively in a single sequence based on genomic coordinates (see Al-

gorithm S1 in Methods S1). As such, a CSG sequence built from a set of annotated transcripts may not necessarily resemble any of

the individual transcript sequences. Each transcript sequence can however be defined by a sequential series of nodes through the

graph. Whippet defines node boundaries (one upstream and one downstream, flanking either side of the node sequence) to describe

the incoming and outgoing connectivity to other nodes. Whether an edge can exist between two nodes is defined by their incoming

and outgoing ‘boundary-types’. Node boundary-types are formally made up of two properties: a classification and an alignment

property. The classification property can be a transcription start (TxStart), transcription end (TxEnd), donor splice site (50SpliceSite),
or acceptor splice site (30SpliceSite) (Figure S1B and Table S7). The alignment property is one of two categories: ‘Soft’ or ‘Hard’. Soft

boundaries are node boundaries adjacent to other nodes in the genomic sequence. For example, in Figure 1B, nodes 3 and 4 have

Soft outgoing and incoming edges, respectively. This is because in an annotated transcript they are part of the same exon (i.e., zero
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nucleotides exist between the end position of node 3 and the start position of node 4 in the genomic sequence). In contrast, Hard

boundaries exist when one or more genomic nucleotides separate the nodes. For example, there is a Hard boundary between nodes

2 and 3 in Figure 1B because genomic sequence separates the nodes. The compatibility of two boundary-types is determined by

three simple rules: (1) All outgoing 50SpliceSite boundaries are compatible with all incoming 30SpliceSite boundaries, (2) Soft bound-

aries are compatible with adjacent neighboring Soft boundaries, and (3) no Hard boundary is compatible with any other boundary

except in the case of Rule #1 (Methods S1 for extended details). This distinction between CSG Hard and Soft boundaries allows

boundary type-specific rules to be utilized for alignment extension. After building all CSGs, the CSG Sequences are concatenated

into a single Multi-CSG sequence that is used to create a transcriptome Full-text index in Minute space (CSG FM-Index) (Ferragina

et al., 2004) for full-text substring searches.

Whippet aligns RNA-seq reads to the CSG index by performing heuristic ungapped extensions from alignment seed se-

quences mapped to the CSG FM-Index (see Methods S1, Algorithm S2 for details). Using the CSG index, Whippet is able to

efficiently align spliced reads to any combination of nodes in a CSG. To facilitate this, reads are aligned across spliced edges

using nucleotide k-mers flanking annotated 50 or 30 splice-site node boundaries. Each 50 or 30 splice-site flanking k-mer indexes

each of two global hash-tables (i.e., associative maps) that link to a list of (gene, node) tuples, respectively (Figure 1D). Spliced

read alignment uses read k-mers at an alignment node boundary to match compatible nodes from the same gene (note all nodes

with outgoing 50 splice sites are compatible with all nodes with incoming 30 splice sites) (Figure 1D, Figure S1; see Methods S1

for extended details). Read alignment in this manner affords considerable efficiency by storing minimal data while supporting de

novo AS event identification.

AS event definition and PSI quantification
After all reads have been assigned full or partial (for multi-mapping reads) counts to the edges in a CSG (seeMethods S1 for details of

isoform-level quantification and multi-mapping read assignment), AS events are next built de novo to quantify AS. In order to define

an AS event for a node, the set of edges connecting to – and skipping over the target node (N) – are collected, where the read count of

a skipping edge must be R 1% of the maximal connecting edge read count. The AS event built de novo for each node (referred to

here as the ‘target node’ of the event) is initially defined by the span of the edges that directly connect or skip the target node.Whippet

iteratively collects all edges that fall within the span of previously defined directly connecting or skipping edges (Figure 1E). Whippet

then performs the same procedure for each non-target nodewithin the AS event, extending the AS event as necessary to encompass

all auxiliary edges, including edges for non-target nodes that do not directly skip or connect to the target node (Figure 1E). The set of

paths through the AS event are then enumerated using Algorithm S3 (see Methods S1).

In order to quantify the AS event paths i˛I, we utilize the set of edges E in the event and the read count ce assigned to each edge

e˛E. Counts for each unique edge e that exist in only one path i are assigned fully. However, non-unique edges found in multiple

paths have counts initially divided among their compatible paths with uniform probability, and then the maximum likelihood for

the relative expression of each AS event path is estimated using the expectation-maximization (EM) algorithm. We define a compat-

ibility matrix ye,i = 1 for an edge e existing in a path i, and ye,i = 0 otherwise (Bray et al., 2016). We define the length of path i as pro-

portional to the number of edges in the path such that: jif
P
e˛E

ye;i (seeMethods S1 for extended details). The probability a of observing

reads from an AS event path iwith relative expression level ji is then defined by aðiÞ = ji jiP
p˛Ijpjp

. The following likelihood function is

therefore iteratively optimized in the EM algorithm:

LðaÞf
Y
e˛E

 X
i˛I

ye;i

aðiÞ
ji

!ce

In the M-step, the relative expression of each path ðjiÞ is given by:

ji =

P
e˛Eaðe; iÞce

ji

In the E-step, the probability a of observing reads from an edge e and path i are:

aðe; iÞ= ye;i jiP
p˛Iye;p jp

The percent-spliced-inJ of the node n is then calculated as the sum of the normalized relative expression of the paths containing

the node {In 3 I}:

Jn =
X
i˛In

bj i; where bj i =
jiP
p˛Ijp

It’s important to note that the this represents a generativemodel for RNA-seq count data, assuming that counts from each edge are

drawn independently from a multinomial distribution. While this assumption will not always be satisfied (e.g., for reads that span
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multiple edges), assuming independence among edges simplifies the problem space considerably and in turn does not adversely

affect the accuracy of the quantifications.

Whippet_TPM
To calculate PSI values for Whippet nodes from the Transcript Per Million (TPM) values calculated by transcript-level analysis tools

such as Kallisto/Salmon (Bray et al., 2016; Patro et al., 2017) (in the Whippet/bin/simulation/whippet-quant-bytpm.jl script, a.k.a

‘Whippet_TPM’), we utilize the quantification concepts described for SUPPA (Trincado et al., 2018). Briefly, Jn =

P
i˛IntiP
i˛Iti

, where

n is the node being quantified, I is the set of transcripts in the gene, In is the set of transcripts containing node n in the gene, and

ti is the TPM of transcript i. To simplify this script, only nodes guaranteed to be quantified correctly are used, i.e., Whippet_TPM

only quantifies nodes with 30SpliceSite incoming and 50SpliceSite outgoing boundary types.

Statistical analysis
Gene function enrichment analysis (Figures 3b and 4d) was performed using g:Profiler (with the python package: gprofiler; http://biit.

cs.ut.ee/gprofiler), which uses a hypergeometric test withmultiple hypothesis testing correction, as originally described by Benjamini

and Hochberg. Mann-Whitney U non-parametric statistical tests were used for comparing distributions (R query: Wilcox.test <

default parameters > ) in Figures 4A, 6B, 6C, 7A, 7C, 7H and, Figure S7. An exception was in Figure 2A and Table S1 when analyzing

repeated-measurements (e.g., in RT-PCR comparisons), in which case the Wilcoxon signed rank test was used (R query: Wilcox.

test – signed = T). Kolmogorov–Smirnov (KS) tests were used in Figure S9. Fisher’s exact test (R query: fisher.test) was used for

comparing two nominal variables in a small population in Figure 7I and Figure S6. DESeq2 (Love et al., 2014) tested for differential

gene expression using negative binomial generalized linear models with a multiple hypothesis testing correction, as originally

described by Benjamini and Hochberg. The adjusted p value cut-off was 0.05. Heatmaps were generated using Affinity Propagation

clustering with the R package ‘‘apcluster.’’ Clustering was based on either pairwise similarities of correlations (Pearson), or mutual

pairwise similarities of data vectors, measured as the negative Euclidean distance. Correlations were assessed using Pearson Cor-

relation Coefficient.

Additional resources
Further benchmarking and methods details are described in Methods S1. Protocol is available at http://github.com/timbitz/

Whippet.jl.

DATA AND SOFTWARE AVAILABILITY

Whippet is implemented in the high-level, high-performance dynamic programming language Julia (julialang.org) and is freely avail-

able as open-source software under the MIT license (Git repository: http://github.com/timbitz/Whippet.jl). The analysis scripts and

simulated data used in this study are available at http://figshare.com/articles/Whippet_analysis_scripts/5711683.
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